GANs for Data Augmentation in Healthcare

GANs for Data Augmentation in Healthcare

Title: GANs for Data Augmentation in Healthcare
Author: Arun Solanki & Mohd Naved
Release: 2023-11-13
Kind: ebook
Genre: Medical, Books, Professional & Technical, Science & Nature, Mathematics, Computers & Internet, Computers
Size: 31279773
Computer-Assisted Diagnostics (CAD) using Convolutional Neural Network (CNN) model has become an important technology in the medical industry, improving the accuracy of diagnostics. However, the lack Magnetic Resonance Imaging (MRI) data leads to the failure of the depth study algorithm. Medical records often different because of the cost of obtaining information and the time-consuming information. In general, clinical data are unreliable, the training of neural network methods to distribute disease across classes does not yield the desired results. Data augmentation is often done by training data to solve problems caused by augmentation tasks such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue.Data Augmentation and Segmentation imaging using GAN can be used to provide clear images of brain, liver, chest, abdomen, and liver on MRI. In addition, GAN shows strong promise in the field of clinical image synthesis. In many cases, clinical evaluation is limited by a lack of data and/or the cost of actual information. GAN can overcome these problems by enabling scientists and clinicians to work on beautiful and realistic images. This can improve diagnosis, prognosis, and disease. Finally, GAN highlights the potential for location of patient information with data. This is a beneficial clinical application of GAN because it can effectively protect patient confidentiality. The proposed book covers the application of GANs on medical imaging augmentation and segmentation.

More Books from Arun Solanki & Mohd Naved

Arun Solanki, Vishal Jain & Loveleen Gaur
Arun Solanki, Sandhya Tarar, Simar Preet Singh & Akash Tayal
Loveleen Gaur, Arun Solanki, Samuel Fosso Wamba & Noor Zaman Jhanjhi
Arun Solanki, Adarsh Kumar & Anand Nayyar
Meenu Gupta, Rachna Jain, Arun Solanki & Fadi Al-Turjman
Vishal Jain, Akash Tayal, Jaspreet Singh & Arun Solanki
Simar Preet Singh, Arun Solanki, Anju Sharma, Zdzislaw Polkowski & Rajesh Kumar
Arun Solanki, Sanjay Kumar Sharma, Sandhya Tarar, Pradeep Tomar, Sandeep Sharma & Anand Nayyar