Title | : | Two-dimensional Two Product Cubic Systems, Vol. III |
---|---|---|
Author | : | Albert C. J. Luo |
Release | : | 2024-10-10 |
Kind | : | ebook |
Genre | : | Science & Nature, Books, Mathematics, Professional & Technical, Engineering, Physics |
Size | : | 48211294 |
This book is the eleventh of 15 related monographs on Cubic Systems, examines self-linear and crossing-quadratic product systems. It discusses the equilibrium and flow singularity and bifurcations, The double-inflection saddles featured in this volume are the appearing bifurcations for two connected parabola-saddles, and also for saddles and centers. The parabola saddles are for the appearing bifurcations of saddle and center. The inflection-source and sink flows are the appearing bifurcations for connected hyperbolic and hyperbolic-secant flows. Networks of higher-order equilibriums and flows are presented. For the network switching, the inflection-sink and source infinite-equilibriums exist, and parabola-source and sink infinite-equilibriums are obtained. The equilibrium networks with connected hyperbolic and hyperbolic-secant flows are discussed. The inflection-source and sink infinite-equilibriums are for the switching bifurcation of two equilibrium networks. Develops a theory of nonlinear dynamics and singularity of crossing-linear and self-quadratic product systems; Presents networks of singular, simple center and saddle with hyperbolic flows in same structure product-cubic systems; Reveals s network switching bifurcations through hyperbolic, parabola, circle sink and other parabola-saddles. |